
Chapter 12

Local Search

In the previous two chapters, we have considered techniques for dealing with

computationally intractable problems: in Chapter 10, by identifying structured

special cases of NP-hard problems, and in Chapter 11, by designing polynomial-

time approximation algorithms. We now develop a third and final topic related

to this theme: the design of local search algorithms.

Local search is a very general technique; it describes any algorithm that

“explores” the space of possible solutions in a sequential fashion, moving

in one step from a current solution to a “nearby” one. The generality and

flexibility of this notion has the advantage that it is not difficult to design

a local search approach to almost any computationally hard problem; the

counterbalancing disadvantage is that it is often very difficult to say anything

precise or provable about the quality of the solutions that a local search

algorithm finds, and consequently very hard to tell whether one is using a

good local search algorithm or a poor one.

Our discussion of local search in this chapter will reflect these trade-offs.

Local search algorithms are generally heuristics designed to find good, but

not necessarily optimal, solutions to computational problems, and we begin

by talking about what the search for such solutions looks like at a global

level. A useful intuitive basis for this perspective comes from connections with

energy minimization principles in physics, and we explore this issue first. Our

discussion for this part of the chapter will have a somewhat different flavor

from what we’ve generally seen in the book thus far; here, we’ll introduce

some algorithms, discuss them qualitatively, but admit quite frankly that we

can’t prove very much about them.

There are cases, however, in which it is possible to prove properties

of local search algorithms, and to bound their performance relative to an

662 Chapter 12 Local Search

Figure 12.1 When the poten-

tial energy landscape has the

structure of a simple funnel,

it is easy to find the lowest

point.

C

B

A

Figure 12.2 Most landscapes

are more complicated than

simple funnels; for exam-

ple, in this “double funnel,”

there’s a deep global mini-

mum and a shallower local

minimum.

optimal solution. This will be the focus of the latter part of the chapter: We

begin by considering a case—the dynamics of Hopfield neural networks—in

which local search provides the natural way to think about the underlying

behavior of a complex process; we then focus on some NP-hard problems for

which local search can be used to design efficient algorithms with provable

approximation guarantees. We conclude the chapter by discussing a different

type of local search: the game-theoretic notions of best-response dynamics

and Nash equilibria, which arise naturally in the study of systems that contain

many interacting agents.

12.1 The Landscape of an Optimization Problem
Much of the core of local search was developed by people thinking in terms

of analogies with physics. Looking at the wide range of hard computational

problems that require the minimization of some quantity, they reasoned as

follows. Physical systems are performing minimization all the time, when they

seek to minimize their potential energy. What can we learn from the ways in

which nature performs minimization? Does it suggest new kinds of algorithms?

Potential Energy

If the world really looked the way a freshman mechanics class suggests, it

seems that it would consist entirely of hockey pucks sliding on ice and balls

rolling down inclined surfaces. Hockey pucks usually slide because you push

them; but why do balls roll downhill? One perspective that we learn from

Newtonian mechanics is that the ball is trying to minimize its potential energy.

In particular, if the ball has mass m and falls a distance of h, it loses an amount

of potential energy proportional to mh. So, if we release a ball from the top

of the funnel-shaped landscape in Figure 12.1, its potential energy will be

minimized at the lowest point.

If we make the landscape a little more complicated, some extra issues

creep in. Consider the “double funnel” in Figure 12.2. Point A is lower than

point B, and so is a more desirable place for the ball to come to rest. But if

we start the ball rolling from point C, it will not be able to get over the barrier

between the two funnels, and it will end up at B. We say that the ball has

become trapped in a local minimum: It is at the lowest point if one looks in

the neighborhood of its current location; but stepping back and looking at the

whole landscape, we see that it has missed the global minimum.

Of course, enormously large physical systems must also try to minimize

their energy. Consider, for example, taking a few grams of some homogeneous

substance, heating it up, and studying its behavior over time. To capture

the potential energy exactly, we would in principle need to represent the

12.1 The Landscape of an Optimization Problem 663

Figure 12.3 In a general en-

ergy landscape, there may be

a very large number of local

minima that make it hard to

find the global minimum, as

in the “jagged funnel” drawn

here.

behavior of each atom in the substance, as it interacts with nearby atoms.

But it is also useful to speak of the properties of the system as a whole—as

an aggregate—and this is the domain of statistical mechanics. We will come

back to statistical mechanics in a little while, but for now we simply observe

that our notion of an “energy landscape” provides useful visual intuition for

the process by which even a large physical system minimizes its energy. Thus,

while it would in reality take a huge number of dimensions to draw the true

“landscape” that constrains the system, we can use one-dimensional “cartoon”

representations to discuss the distinction between local and global energy

minima, the “funnels” around them, and the “height” of the energy barriers

between them.

Taking a molten material and trying to cool it to a perfect crystalline solid

is really the process of trying to guide the underlying collection of atoms to

its global potential energy minimum. This can be very difficult, and the large

number of local minima in a typical energy landscape represent the pitfalls

that can lead the system astray in its search for the global minimum. Thus,

rather than the simple example of Figure 12.2, which simply contains a single

wrong choice, we should be more worried about landscapes with the schematic

cartoon representation depicted in Figure 12.3. This can be viewed as a “jagged

funnel,” in which there are local minima waiting to trap the system all the way

along its journey to the bottom.

The Connection to Optimization

This perspective on energy minimization has really been based on the follow-

ing core ingredients: The physical system can be in one of a large number of

possible states; its energy is a function of its current state; and from a given

state, a small perturbation leads to a “neighboring” state. The way in which

these neighboring states are linked together, along with the structure of the

energy function on them, defines the underlying energy landscape.

It’s from this perspective that we again start to think about computational

minimization problems. In a typical such problem, we have a large (typically

exponential-size) set C of possible solutions. We also have a cost function c(·)

that measures the quality of each solution; for a solution S ∈ C, we write its

cost as c(S). The goal is to find a solution S∗ ∈ C for which c(S∗) is as small as

possible.

So far this is just the way we’ve thought about such problems all along. We

now add to this the notion of a neighbor relation on solutions, to capture the

idea that one solution S′ can be obtained by a small modification of another

solution S. We write S ∼ S′ to denote that S′ is a neighboring solution of S,

and we use N(S) to denote the neighborhood of S, the set {S′ : S ∼ S′}. We

will primarily be considering symmetric neighbor relations here, though the

664 Chapter 12 Local Search

basic points we discuss will apply to asymmetric neighbor relations as well. A

crucial point is that, while the set C of possible solutions and the cost function

c(·) are provided by the specification of the problem, we have the freedom to

make up any neighbor relation that we want.

A local search algorithm takes this setup, including a neighbor relation, and

works according to the following high-level scheme. At all times, it maintains

a current solution S ∈ C. In a given step, it chooses a neighbor S′ of S, declares

S′ to be the new current solution, and iterates. Throughout the execution of

the algorithm, it remembers the minimum-cost solution that it has seen thus

far; so, as it runs, it gradually finds better and better solutions. The crux of

a local search algorithm is in the choice of the neighbor relation, and in the

design of the rule for choosing a neighboring solution at each step.

Thus one can think of a neighbor relation as defining a (generally undi-

rected) graph on the set of all possible solutions, with edges joining neigh-

boring pairs of solutions. A local search algorithm can then be viewed as

performing a walk on this graph, trying to move toward a good solution.

An Application to the Vertex Cover Problem

This is still all somewhat vague without a concrete problem to think about; so

we’ll use the Vertex Cover Problem as a running example here. It’s important

to keep in mind that, while Vertex Cover makes for a good example, there

are many other optimization problems that would work just as well for this

illustration.

Thus we are given a graph G = (V , E); the set C of possible solutions

consists of all subsets S of V that form vertex covers. Hence, for example, we

always have V ∈ C. The cost c(S) of a vertex cover S will simply be its size; in

this way, minimizing the cost of a vertex cover is the same as finding one of

minimum size. Finally, we will focus our examples on local search algorithms

that use a particularly simple neighbor relation: we say that S ∼ S′ if S′ can

be obtained from S by adding or deleting a single node. Thus our local search

algorithms will be walking through the space of possible vertex covers, adding

or deleting a node to their current solution in each step, and trying to find as

small a vertex cover as possible.

One useful fact about this neighbor relation is the following.

(12.1) Each vertex cover S has at most n neighboring solutions.

The reason is simply that each neighboring solution of S is obtained by adding

or deleting a distinct node. A consequence of (12.1) is that we can efficiently

examine all possible neighboring solutions of S in the process of choosing

which to select.

12.1 The Landscape of an Optimization Problem 665

Let’s think first about a very simple local search algorithm, which we’ll

term gradient descent. Gradient descent starts with the full vertex set V and

uses the following rule for choosing a neighboring solution.

Let S denote the current solution. If there is a neighbor S′ of S with strictly

lower cost, then choose the neighbor whose cost is as small as possible.

Otherwise terminate the algorithm.

So gradient descent moves strictly “downhill” as long as it can; once this is no

longer possible, it stops.

We can see that gradient descent terminates precisely at solutions that are

local minima: solutions S such that, for all neighboring S′, we have c(S) ≤ c(S′).

This definition corresponds very naturally to our notion of local minima in

energy landscapes: They are points from which no one-step perturbation will

improve the cost function.

How can we visualize the behavior of a local search algorithm in terms

of the kinds of energy landscapes we illustrated earlier? Let’s think first about

gradient descent. The easiest instance of Vertex Cover is surely an n-node

graph with no edges. The empty set is the optimal solution (since there are no

edges to cover), and gradient descent does exceptionally well at finding this

solution: It starts with the full vertex set V, and keeps deleting nodes until

there are none left. Indeed, the set of vertex covers for this edge-less graph

corresponds naturally to the funnel we drew in Figure 12.1: The unique local

minimum is the global minimum, and there is a downhill path to it from any

point.

When can gradient descent go astray? Consider a “star graph” G, consisting

of nodes x1, y1, y2, . . . , yn−1, with an edge from x1 to each yi. The minimum

vertex cover for G is the singleton set {x1}, and gradient descent can reach

this solution by successively deleting y1, . . . , yn−1 in any order. But, if gradient

descent deletes the node x1 first, then it is immediately stuck: No node yi can be

deleted without destroying the vertex cover property, so the only neighboring

solution is the full node set V, which has higher cost. Thus the algorithm has

become trapped in the local minimum {y1, y2, . . . , yn−1}, which has very high

cost relative to the global minimum.

Pictorially, we see that we’re in a situation corresponding to the double

funnel of Figure 12.2. The deeper funnel corresponds to the optimal solution

{x1}, while the shallower funnel corresponds to the inferior local minimum

{y1, y2, . . . , yn−1}. Sliding down the wrong portion of the slope at the very

beginning can send one into the wrong minimum. We can easily generalize

this situation to one in which the two minima have any relative depths we

want. Consider, for example, a bipartite graph G with nodes x1, x2, . . . , xk and

y1, y2, . . . , yℓ, where k < ℓ, and there is an edge from every node of the form xi

666 Chapter 12 Local Search

to every node of the form yj. Then there are two local minima, corresponding

to the vertex covers {x1, . . . , xk} and {y1, . . . , yℓ}. Which one is discovered by

a run of gradient descent is entirely determined by whether it first deletes an

element of the form xi or yj.

With more complicated graphs, it’s often a useful exercise to think about

the kind of landscape they induce; and conversely, one sometimes may look at

a landscape and consider whether there’s a graph that gives rise to something

like it.

For example, what kind of graph might yield a Vertex Cover instance with

a landscape like the jagged funnel in Figure 12.3? One such graph is simply an

n-node path, where n is an odd number, with nodes labeled v1, v2, . . . , vn in

order. The unique minimum vertex cover S∗ consists of all nodes vi where i is

even. But there are many local optima. For example, consider the vertex cover

{v2, v3, v5, v6, v8, v9, . . .} in which every third node is omitted. This is a vertex

cover that is significantly larger than S∗; but there’s no way to delete any node

from it while still covering all edges. Indeed, it’s very hard for gradient descent

to find the minimum vertex cover S∗ starting from the full vertex set V: Once

it’s deleted just a single node vi with an even value of i, it’s lost the chance to

find the global optimum S∗. Thus the even/odd parity distinction in the nodes

captures a plethora of different wrong turns in the local search, and hence

gives the overall funnel its jagged character. Of course, there is not a direct

correspondence between the ridges in the drawing and the local optima; as

we warned above, Figure 12.3 is ultimately just a cartoon rendition of what’s

going on.

But we see that even for graphs that are structurally very simple, gradient

descent is much too straightforward a local search algorithm. We now look at

some more refined local search algorithms that use the same type of neighbor

relation, but include a method for “escaping” from local minima.

12.2 The Metropolis Algorithm and
Simulated Annealing

The first idea for an improved local search algorithm comes from the work of

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953). They considered

the problem of simulating the behavior of a physical system according to

principles of statistical mechanics. A basic model from this field asserts that the

probability of finding a physical system in a state with energy E is proportional

to the Gibbs-Boltzmann function e−E/(kT), where T > 0 is the temperature and

k > 0 is a constant. Let’s look at this function. For any temperature T, the

function is monotone decreasing in the energy E, so this states that a physical

12.2 The Metropolis Algorithm and Simulated Annealing 667

system is more likely to be in a lower energy state than in a high energy

state. Now let’s consider the effect of the temperature T. When T is small, the

probability for a low-energy state is significantly larger than the probability for

a high-energy state. However, if the temperature is large, then the difference

between these two probabilities is very small, and the system is almost equally

likely to be in any state.

The Metropolis Algorithm

Metropolis et al. proposed the following method for performing step-by-step

simulation of a system at a fixed temperature T. At all times, the simulation

maintains a current state of the system and tries to produce a new state by

applying a perturbation to this state. We’ll assume that we’re only interested

in states of the system that are “reachable” from some fixed initial state by a

sequence of small perturbations, and we’ll assume that there is only a finite set

C of such states. In a single step, we first generate a small random perturbation

to the current state S of the system, resulting in a new state S′. Let E(S) and E(S′)

denote the energies of S and S′, respectively. If E(S′) ≤ E(S), then we update

the current state to be S′. Otherwise let �E = E(S′) − E(S) > 0. We update the

current state to be S′ with probability e−�E/(kT), and otherwise leave the current

state at S.

Metropolis et al. proved that their simulation algorithm has the following

property. To prevent too long a digression, we omit the proof; it is actually a

direct consequence of some basic facts about random walks.

(12.2) Let

Z =
∑

S∈C

e−E(S)/(kT).

For a state S, let fS(t) denote the fraction of the first t steps in which the state

of the simulation is in S. Then the limit of fS(t) as t approaches ∞ is, with

probability approaching 1, equal to 1
Z · e−E(S)/(kT).

This is exactly the sort of fact one wants, since it says that the simulation

spends roughly the correct amount of time in each state, according to the

Gibbs-Boltzmann equation.

If we want to use this overall scheme to design a local search algorithm

for minimization problems, we can use the analogies of Section 12.1 in which

states of the system are candidate solutions, with energy corresponding to cost.

We then see that the operation of the Metropolis Algorithm has a very desirable

pair of features in a local search algorithm: It is biased toward “downhill”

668 Chapter 12 Local Search

moves but will also accept “uphill” moves with smaller probability. In this way,

it is able to make progress even when situated in a local minimum. Moreover,

as expressed in (12.2), it is globally biased toward lower-cost solutions.

Here is a concrete formulation of the Metropolis Algorithm for a minimiza-

tion problem.

Start with an initial solution S0, and constants k and T

In one step:

Let S be the current solution

Let S′ be chosen uniformly at random from the neighbors of S

If c(S′) ≤ c(S) then

Update S ← S′

Else

With probability e−(c(S′)−c(S))/(kT)

Update S ← S′

Otherwise

Leave S unchanged

EndIf

Thus, on the Vertex Cover instance consisting of the star graph in Sec-

tion 12.1, in which x1 is joined to each of y1, . . . , yn−1, we see that the

Metropolis Algorithm will quickly bounce out of the local minimum that arises

when x1 is deleted: The neighboring solution in which x1 is put back in will

be generated and will be accepted with positive probability. On more complex

graphs as well, the Metropolis Algorithm is able, to some extent, to correct the

wrong choices it makes as it proceeds.

At the same time, the Metropolis Algorithm does not always behave the

way one would want, even in some very simple situations. Let’s go back to

the very first graph we considered, a graph G with no edges. Gradient descent

solves this instance with no trouble, deleting nodes in sequence until none

are left. But, while the Metropolis Algorithm will start out this way, it begins

to go astray as it nears the global optimum. Consider the situation in which

the current solution contains only c nodes, where c is much smaller than the

total number of nodes, n. With very high probability, the neighboring solution

generated by the Metropolis Algorithm will have size c + 1, rather than c − 1,

and with reasonable probability this uphill move will be accepted. Thus it

gets harder and harder to shrink the size of the vertex cover as the algorithm

proceeds; it is exhibiting a sort of “flinching” reaction near the bottom of the

funnel.

12.2 The Metropolis Algorithm and Simulated Annealing 669

This behavior shows up in more complex examples as well, and in more

complex ways; but it is certainly striking for it to show up here so simply. In

order to figure out how we might fix this behavior, we return to the physical

analogy that motivated the Metropolis Algorithm, and ask: What’s the meaning

of the temperature parameter T in the context of optimization?

We can think of T as a one-dimensional knob that we’re able to turn,

and it controls the extent to which the algorithm is willing to accept uphill

moves. As we make T very large, the probability of accepting an uphill move

approaches 1, and the Metropolis Algorithm behaves like a random walk that

is basically indifferent to the cost function. As we make T very close to 0, on

the other hand, uphill moves are almost never accepted, and the Metropolis

Algorithm behaves almost identically to gradient descent.

Simulated Annealing

Neither of these temperature extremes—very low or very high—is an effective

way to solve minimization problems in general, and we can see this in physical

settings as well. If we take a solid and heat it to a very high temperature, we

do not expect it to maintain a nice crystal structure, even if this is energetically

favorable; and this can be explained by the large value of kT in the expression

e−E(S)/(kT), which makes the enormous number of less favorable states too

probable. This is a way in which we can view the “flinching” behavior of the

Metropolis Algorithm on an easy Vertex Cover instance: It’s trying to find the

lowest energy state at too high a temperature, when all the competing states

have too high a probability. On the other hand, if we take a molten solid and

freeze it very abruptly, we do not expect to get a perfect crystal either; rather,

we get a deformed crystal structure with many imperfections. This is because,

with T very small, we’ve come too close to the realm of gradient descent, and

the system has become trapped in one of the numerous ridges of its jagged

energy landscape. It is interesting to note that when T is very small, then

statement (12.2) shows that in the limit, the random walk spends most of its

time in the lowest energy state. The problem is that the random walk will take

an enormous amount of time before getting anywhere near this limit.

In the early 1980s, as people were considering the connection between

energy minimization and combinatorial optimization, Kirkpatrick, Gelatt, and

Vecchi (1983) thought about the issues we’ve been discussing, and they asked

the following question: How do we solve this problem for physical systems,

and what sort of algorithm does this suggest? In physical systems, one guides

a material to a crystalline state by a process known as annealing: The material

is cooled very gradually from a high temperature, allowing it enough time to

reach equilibrium at a succession of intermediate lower temperatures. In this

670 Chapter 12 Local Search

way, it is able to escape from the energy minima that it encounters all the way

through the cooling process, eventually arriving at the global optimum.

We can thus try to mimic this process computationally, arriving at an

algorithmic technique known as simulated annealing. Simulated annealing

works by running the Metropolis Algorithm while gradually decreasing the

value of T over the course of the execution. The exact way in which T is

updated is called, for natural reasons, a cooling schedule, and a number of

considerations go into the design of the cooling schedule. Formally, a cooling

schedule is a function τ from {1, 2, 3, . . .} to the positive real numbers; in

iteration i of the Metropolis Algorithm, we use the temperature T = τ(i) in our

definition of the probability.

Qualitatively, we can see that simulated annealing allows for large changes

in the solution in the early stages of its execution, when the temperature is

high. Then, as the search proceeds, the temperature is lowered so that we are

less likely to undo progress that has already been made. We can also view

simulated annealing as trying to optimize a trade-off that is implicit in (12.2).

According to (12.2), values of T arbitrarily close to 0 put the highest probability

on minimum-cost solutions; however, (12.2) by itself says nothing about the

rate of convergence of the functions fS(t) that it uses. It turns out that these

functions converge, in general, much more rapidly for large values of T; and so

to find minimum-cost solutions quickly, it is useful to speed up convergence

by starting the process with T large, and then gradually reducing it so as to

raise the probability on the optimal solutions. While we believe that physical

systems reach a minimum energy state via annealing, the simulated annealing

method has no guarantee of finding an optimal solution. To see why, consider

the double funnel of Figure 12.2. If the two funnels take equal area, then

at high temperatures the system is essentially equally likely to be in either

funnel. Once we cool the temperature, it will become harder and harder to

switch between the two funnels. There appears to be no guarantee that at the

end of annealing, we will be at the bottom of the lower funnel.

There are many open problems associated with simulated annealing, both

in proving properties of its behavior and in determining the range of settings

for which it works well in practice. Some of the general questions that come

up here involve probabilistic issues that are beyond the scope of this book.

Having spent some time considering local search at a very general level,

we now turn, in the next few sections, to some applications in which it is

possible to prove fairly strong statements about the behavior of local search

algorithms and about the local optima that they find.

12.3 An Application of Local Search to Hopfield Neural Networks 671

12.3 An Application of Local Search to Hopfield
Neural Networks

Thus far we have been discussing local search as a method for trying to find the

global optimum in a computational problem. There are some cases, however,

in which, by examining the specification of the problem carefully, we discover

that it is really just an arbitrary local optimum that is required. We now consider

a problem that illustrates this phenomenon.

The Problem

The problem we consider here is that of finding stable configurations in

Hopfield neural networks. Hopfield networks have been proposed as a simple

model of an associative memory, in which a large collection of units are

connected by an underlying network, and neighboring units try to correlate

their states. Concretely, a Hopfield network can be viewed as an undirected

graph G = (V , E), with an integer-valued weight we on each edge e; each weight

may be positive or negative. A configuration S of the network is an assignment

of the value −1 or +1 to each node u; we will refer to this value as the state su

of the node u. The meaning of a configuration is that each node u, representing

a unit of the neural network, is trying to choose between one of two possible

states (“on” or “off”; “yes” or “no”); and its choice is influenced by those of

its neighbors as follows. Each edge of the network imposes a requirement on

its endpoints: If u is joined to v by an edge of negative weight, then u and v

want to have the same state, while if u is joined to v by an edge of positive

weight, then u and v want to have opposite states. The absolute value |we|

will indicate the strength of this requirement, and we will refer to |we| as the

absolute weight of edge e.

Unfortunately, there may be no configuration that respects the require-

ments imposed by all the edges. For example, consider three nodes a, b, c all

mutually connected to one another by edges of weight 1. Then, no matter what

configuration we choose, two of these nodes will have the same state and thus

will be violating the requirement that they have opposite states.

In view of this, we ask for something weaker. With respect to a given

configuration, we say that an edge e = (u, v) is good if the requirement it

imposes is satisfied by the states of its two endpoints: either we < 0 and su = sv,

or we > 0 and su �= sv. Otherwise we say e is bad. Note that we can express the

condition that e is good very compactly, as follows: wesusv < 0. Next we say

that a node u is satisfied in a given configuration if the total absolute weight

672 Chapter 12 Local Search

of all good edges incident to u is at least as large as the total absolute weight

of all bad edges incident to u. We can write this as

∑

v :e=(u,v)∈E

wesusv ≤ 0.

Finally, we call a configuration stable if all nodes are satisfied.

Why do we use the term stable for such configurations? This is based on

viewing the network from the perspective of an individual node u. On its own,

the only choice u has is whether to take the state −1 or +1; and like all nodes,

it wants to respect as many edge requirements as possible (as measured in

absolute weight). Suppose u asks: Should I flip my current state? We see that

if u does flip its state (while all other nodes keep their states the same), then

all the good edges incident to u become bad, and all the bad edges incident

to u become good. So, to maximize the amount of good edge weight under

its direct control, u should flip its state if and only if it is not satisfied. In

other words, a stable configuration is one in which no individual node has an

incentive to flip its current state.

A basic question now arises: Does a Hopfield network always have a stable

configuration, and if so, how can we find one?

Designing the Algorithm

We will now design an algorithm that establishes the following result.

(12.3) Every Hopfield network has a stable configuration, and such a config-

uration can be found in time polynomial in n and W =
∑

e |we|.

We will see that stable configurations in fact arise very naturally as the

local optima of a certain local search procedure on the Hopfield network.

To see that the statement of (12.3) is not entirely trivial, we note that

it fails to remain true if one changes the model in certain natural ways. For

example, suppose we were to define a directed Hopfield network exactly as

above, except that each edge is directed, and each node determines whether

or not it is satisfied by looking only at edges for which it is the tail. Then,

in fact, such a network need not have a stable configuration. Consider, for

example, a directed version of the three-node network we discussed earlier:

There are nodes a, b, c, with directed edges (a, b), (b, c), (c, a), all of weight

1. Then, if all nodes have the same state, they will all be unsatisfied; and if

one node has a different state from the other two, then the node directly in

front of it will be unsatisfied. Thus there is no configuration of this directed

network in which all nodes are satisfied.

12.3 An Application of Local Search to Hopfield Neural Networks 673

It is clear that a proof of (12.3) will need to rely somewhere on the

undirected nature of the network.

To prove (12.3), we will analyze the following simple iterative procedure,

which we call the State-Flipping Algorithm, to search for a stable configuration.

While the current configuration is not stable

There must be an unsatisfied node

Choose an unsatisfied node u

Flip the state of u

Endwhile

An example of the execution of this algorithm is depicted in Figure 12.4,

ending in a stable configuration.

–10

8 –4

–1 –1

(a)

–10

8 –4

–1 –1

(b)

–10

8 –4

–1 –1

(c)

–10

8 –4

–1 –1

(d)

–10

8 –4

–1 –1

(e)

–10

8 –4

–1 –1

(f)

Figure 12.4 Parts (a)–(f) depict the steps in an execution of the State-Flipping Algorithm

for a five-node Hopfield network, ending in a stable configuration. (Nodes are colored

black or white to indicate their state.)

674 Chapter 12 Local Search

Analyzing the Algorithm

Clearly, if the State-Flipping Algorithm we have just defined terminates, we

will have a stable configuration. What is not obvious is whether it must in

fact terminate. Indeed, in the earlier directed example, this process will simply

cycle through the three nodes, flipping their states sequentially forever.

We now prove that the State-Flipping Algorithm always terminates, and

we give a bound on the number of iterations it takes until termination. This

will provide a proof of (12.3). The key to proving that this process terminates

is an idea we’ve used in several previous situations: to look for a measure of

progress—namely, a quantity that strictly increases with every flip and has an

absolute upper bound. This can be used to bound the number of iterations.

Probably the most natural progress measure would be the number of

satisfied nodes: If this increased every time we flipped an unsatisfied node,

the process would run for at most n iterations before terminating with a stable

configuration. Unfortunately, this does not turn out to work. When we flip an

unsatisfied node v, it’s true that it has now become satisfied, but several of

its previously satisfied neighbors could now become unsatisfied, resulting in

a net decrease in the number of satisfied nodes. This actually happens in one

of the iterations depicted in Figure 12.4: when the middle node changes state,

it renders both of its (formerly satisfied) lower neighbors unsatisfied.

We also can’t try to prove termination by arguing that every node changes

state at most once during the execution of the algorithm: Again, looking at the

example in Figure 12.4, we see that the node in the lower right changes state

twice. (And there are more complex examples in which we can get a single

node to change state many times.)

However, there is a more subtle progress measure that does increase with

each flip of an unsatisfied node. Specifically, for a given configuration S, we

define �(S) to be the total absolute weight of all good edges in the network.

That is,

�(S) =
∑

good e

|we|.

Clearly, for any configuration S, we have �(S) ≥ 0 (since �(S) is a sum of

positive integers), and �(S) ≤ W =
∑

e |we| (since, at most, every edge is

good).

Now suppose that, in a nonstable configuration S, we choose a node u

that is unsatisfied and flip its state, resulting in a configuration S′. What can we

say about the relationship of �(S′) to �(S)? Recall that when u flips its state,

all good edges incident to u become bad, all bad edges incident to u become

good, and all edges that don’t have u as an endpoint remain the same. So,

12.3 An Application of Local Search to Hopfield Neural Networks 675

if we let gu and bu denote the total absolute weight on good and bad edges

incident to u, respectively, then we have

�(S′) = �(S) − gu + bu.

But, since u was unsatisfied in S, we also know that bu > gu; and since bu and

gu are both integers, we in fact have bu ≥ gu + 1. Thus

�(S′) ≥ �(S) + 1.

Hence the value of � begins at some nonnegative integer, increases by at

least 1 on every flip, and cannot exceed W. Thus our process runs for at most

W iterations, and when it terminates, we must have a stable configuration.

Moreover, in each iteration we can identify an unsatisfied node using a number

of arithmetic operations that is polynomial in n; thus a running-time bound

that is polynomial in n and W follows as well.

So we see that, in the end, the existence proof for stable configurations

was really about local search. We first set up an objective function � that

we sought to maximize. Configurations were the possible solutions to this

maximization problem, and we defined what it meant for two configurations S

and S′ to be neighbors: S′ should be obtainable from S by flipping a single state.

We then studied the behavior of a simple iterative improvement algorithm

for local search (the upside-down form of gradient descent, since we have a

maximization problem); and we discovered the following.

(12.4) Any local maximum in the State-Flipping Algorithm to maximize �

is a stable configuration.

It’s worth noting that while our algorithm proves the existence of a stable

configuration, the running time leaves something to be desired when the

absolute weights are large. Specifically, and analogously to what we saw in

the Subset Sum Problem and in our first algorithm for maximum flow, the

algorithm we obtain here is polynomial only in the actual magnitude of the

weights, not in the size of their binary representation. For very large weights,

this can lead to running times that are quite infeasible.

However, no simple way around this situation is currently known. It turns

out to be an open question to find an algorithm that constructs stable states

in time polynomial in n and log W (rather than n and W), or in a number of

primitive arithmetic operations that is polynomial in n alone, independent of

the value of W.

676 Chapter 12 Local Search

12.4 Maximum-Cut Approximation via
Local Search

We now discuss a case where a local search algorithm can be used to provide

a provable approximation guarantee for an optimization problem. We will do

this by analyzing the structure of the local optima, and bounding the quality

of these locally optimal solutions relative to the global optimum. The problem

we consider is the Maximum-Cut Problem, which is closely related to the

problem of finding stable configurations for Hopfield networks that we saw in

the previous section.

The Problem

In the Maximum-Cut Problem, we are given an undirected graph G = (V , E),

with a positive integer weight we on each edge e. For a partition (A, B) of the

vertex set, we use w(A, B) to denote the total weight of edges with one end in

A and the other in B:

w(A, B) =
∑

e=(u , v)
u∈A, v∈B

we.

The goal is to find a partition (A, B) of the vertex set so that w(A, B) is

maximized. Maximum Cut is NP-hard, in the sense that, given a weighted

graph G and a bound β, it is NP-complete to decide whether there is a partition

(A, B) of the vertices of G with w(A, B) ≥ β. At the same time, of course,

Maximum Cut resembles the polynomially solvable Minimum s-t Cut Problem

for flow networks; the crux of its intractability comes from the fact that we are

seeking to maximize the edge weight across the cut, rather than minimize it.

Although the problem of finding a stable configuration of a Hopfield

network was not an optimization problem per se, we can see that Maximum

Cut is closely related to it. In the language of Hopfield networks, Maximum

Cut is an instance in which all edge weights are positive (rather than negative),

and configurations of nodes states S correspond naturally to partitions (A, B):

Nodes have state −1 if and only if they are in the set A, and state +1 if and

only if they are in the set B. The goal is to assign states so that as much weight

as possible is on good edges—those whose endpoints have opposite states.

Phrased this way, Maximum Cut seeks to maximize precisely the quantity

�(S) that we used in the proof of (12.3), in the case when all edge weights

are positive.

Designing the Algorithm

The State-Flipping Algorithm used for Hopfield networks provides a local

search algorithm to approximate the Maximum Cut objective function �(S) =

12.4 Maximum-Cut Approximation via Local Search 677

w(A, B). In terms of partitions, it says the following: If there exists a node

u such that the total weight of edges from u to nodes in its own side of the

partition exceeds the total weight of edges from u to nodes on the other side of

the partition, then u itself should be moved to the other side of the partition.

We’ll call this the “single-flip” neighborhood on partitions: Partitions

(A, B) and (A′, B′) are neighboring solutions if (A′, B′) can be obtained from

(A, B) by moving a single node from one side of the partition to the other. Let’s

ask two basic questions.

. Can we say anything concrete about the quality of the local optima under

the single-flip neighborhood?

. Since the single-flip neighborhood is about as simple as one could

imagine, what other neighborhoods might yield stronger local search

algorithms for Maximum Cut?

We address the first of these questions here, and we take up the second one

in the next section.

Analyzing the Algorithm

The following result addresses the first question, showing that local optima

under the single-flip neighborhood provide solutions achieving a guaranteed

approximation bound.

(12.5) Let (A, B) be a partition that is a local optimum for Maximum Cut

under the single-flip neighborhood. Let (A∗, B∗) be a globally optimal partition.

Then w(A, B) ≥ 1
2w(A∗, B∗).

Proof. Let W =
∑

e we. We also extend our notation a little: for two nodes u

and v, we use wuv to denote we if there is an edge e joining u and v, and 0

otherwise.

For any node u ∈ A, we must have
∑

v∈A

wuv ≤
∑

v∈B

wuv,

since otherwise u should be moved to the other side of the partition, and

(A, B) would not be locally optimal. Suppose we add up these inequalities for

all u ∈ A; any edge that has both ends in A will appear on the left-hand side of

exactly two of these inequalities, while any edge that has one end in A and one

end in B will appear on the right-hand side of exactly one of these inequalities.

Thus, we have

2
∑

{u,v}⊆A

wuv ≤
∑

u∈A,v∈B

wuv = w(A, B). (12.1)

678 Chapter 12 Local Search

We can apply the same reasoning to the set B, obtaining

2
∑

{u,v}⊆B

wuv ≤
∑

u∈A,v∈B

wuv = w(A, B). (12.2)

If we add together inequalities (12.1) and (12.2), and divide by 2, we get

∑

{u,v}⊆A

wuv +
∑

{u,v}⊆B

wuv ≤ w(A, B). (12.3)

The left-hand side of inequality (12.3) accounts for all edge weight that does

not cross from A to B; so if we add w(A, B) to both sides of (12.3), the left-

hand side becomes equal to W. The right-hand side becomes 2w(A, B), so we

have W ≤ 2w(A, B), or w(A, B) ≥ 1
2W.

Since the globally optimal partition (A∗, B∗) clearly satisfies w(A∗, B∗) ≤

W, we have w(A, B) ≥ 1
2w(A∗, B∗).

Notice that we never really thought much about the optimal partition

(A∗, B∗) in the proof of (12.5); we really showed the stronger statement that,

in any locally optimal solution under the single-flip neighborhood, at least half

the total edge weight in the graph crosses the partition.

Statement (12.5) proves that a local optimum is a 2-approximation to

the maximum cut. This suggests that the local optimization may be a good

algorithm for approximately maximizing the cut value. However, there is one

more issue that we need to consider: the running time. As we saw at the end

of Section 12.3, the Single-Flip Algorithm is only pseudo-polynomial, and it

is an open problem whether a local optimum can be found in polynomial

time. However, in this case we can do almost as well, simply by stopping the

algorithm when there are no “big enough” improvements.

Let (A, B) be a partition with weight w(A, B). For a fixed ǫ > 0, let us say

that a single node flip is a big-improvement-flip if it improves the cut value by

at least 2ǫ
n w(A, B) where n = |V|. Now consider a version of the Single-Flip

Algorithm when we only accept big-improvement-flips and terminate once

no such flip exists, even if the current partition is not a local optimum. We

claim that this will lead to almost as good an approximation and will run

in polynomial time. First we can extend the previous proof to show that the

resulting cut is almost as good. We simply have to add the term 2ǫ
n w(A, B) to

each inequality, as all we know is that there are no big-improvement-flips.

(12.6) Let (A, B) be a partition such that no big-improvement-flip is possible.

Let (A∗, B∗) be a globally optimal partition. Then (2 + ǫ)w(A, B) ≥ w(A∗, B∗).

Next we consider the running time.

12.5 Choosing a Neighbor Relation 679

(12.7) The version of the Single-Flip Algorithm that only accepts big-

improvement-flips terminates after at most O(ǫ−1n log W) flips, assuming the

weights are integral, and W =
∑

e we.

Proof. Each flip improves the objective function by at least a factor of (1+

ǫ/n). Since (1+ 1/x)x ≥ 2 for any x ≥ 1, we see that (1+ ǫ/n)n/ǫ ≥ 2, and so

the objective function increases by a factor of at least 2 every n/ǫ flips. The

weight cannot exceed W, and hence it can only be doubled at most log W

times.

12.5 Choosing a Neighbor Relation
We began the chapter by saying that a local search algorithm is really based

on two fundamental ingredients: the choice of the neighbor relation, and the

rule for choosing a neighboring solution at each step. In Section 12.2 we spent

time thinking about the second of these: both the Metropolis Algorithm and

simulated annealing took the neighbor relation as given and modified the way

in which a neighboring solution should be chosen.

What are some of the issues that should go into our choice of the neighbor

relation? This can turn out to be quite subtle, though at a high level the trade-off

is a basic one.

(i) The neighborhood of a solution should be rich enough that we do not

tend to get stuck in bad local optima; but

(ii) the neighborhood of a solution should not be too large, since we want to

be able to efficiently search the set of neighbors for possible local moves.

If the first of these points were the only concern, then it would seem that we

should simply make all solutions neighbors of one another—after all, then

there would be no local optima, and the global optimum would always be just

one step away! The second point exposes the (obvious) problem with doing

this: If the neighborhood of the current solution consists of every possible

solution, then the local search paradigm gives us no leverage whatsoever; it

reduces simply to brute-force search of this neighborhood.

Actually, we’ve already encountered one case in which choosing the right

neighbor relation had a profound effect on the tractability of a problem, though

we did not explicitly take note of this at the time: This was in the Bipartite

Matching Problem. Probably the simplest neighbor relation on matchings

would be the following: M ′ is a neighbor of M if M ′ can be obtained by

the insertion or deletion of a single edge in M. Under this definition, we get

“landscapes” that are quite jagged, quite like the Vertex Cover examples we

680 Chapter 12 Local Search

saw earlier; and we can get locally optimal matchings under this definition

that have only half the size of the maximum matching.

But suppose we try defining a more complicated (indeed, asymmetric)

neighbor relation: We say that M ′ is a neighbor of M if, when we set up

the corresponding flow network, M ′ can be obtained from M by a single

augmenting path. What can we say about a matching M if it is a local maximum

under this neighbor relation? In this case, there is no augmenting path, and

so M must in fact be a (globally) maximum matching. In other words, with

this neighbor relation, the only local maxima are global maxima, and so

direct gradient ascent will produce a maximum matching. If we reflect on

what the Ford-Fulkerson algorithm is doing in our reduction from Bipartite

Matching to Maximum Flow, this makes sense: the size of the matching strictly

increases in each step, and we never need to “back out” of a local maximum.

Thus, by choosing the neighbor relation very carefully, we’ve turned a jagged

optimization landscape into a simple, tractable funnel.

Of course, we do not expect that things will always work out this well.

For example, since Vertex Cover is NP-complete, it would be surprising if it

allowed for a neighbor relation that simultaneously produced “well-behaved”

landscapes and neighborhoods that could be searched efficiently. We now

look at several possible neighbor relations in the context of the Maximum Cut

Problem, which we considered in the previous section. The contrasts among

these neighbor relations will be characteristic of issues that arise in the general

topic of local search algorithms for computationally hard graph-partitioning

problems.

Local Search Algorithms for Graph Partitioning

In Section 12.4, we considered a state-flipping algorithm for the Maximum-

Cut Problem, and we showed that the locally optimal solutions provide a

2-approximation. We now consider neighbor relations that produce larger

neighborhoods than the single-flip rule, and consequently attempt to reduce

the prevalence of local optima. Perhaps the most natural generalization is the

k-flip neighborhood, for k ≥ 1: we say that partitions (A, B) and (A′, B′) are

neighbors under the k-flip rule if (A′, B′) can be obtained from (A, B) by moving

at most k nodes from one side of the partition to the other.

Now, clearly if (A, B) and (A′, B′) are neighbors under the k-flip rule, then

they are also neighbors under the k′-flip rule for every k′ > k. Thus, if (A, B) is a

local optimum under the k′-flip rule, it is also a local optimum under the k-flip

rule for every k < k′. But reducing the set of local optima by raising the value

of k comes at a steep computational price: to examine the set of neighbors of

(A, B) under the k-flip rule, we must consider all �(nk) ways of moving up to

12.6 Classification via Local Search 681

k nodes to the opposite side of the partition. This becomes prohibitive even

for small values of k.

Kernighan and Lin (1970) proposed an alternate method for generating

neighboring solutions; it is computationally much more efficient, but still

allows large-scale transformations of solutions in a single step. Their method,

which we’ll call the K-L heuristic, defines the neighbors of a partition (A, B)

according the following n-phase procedure.

. In phase 1, we choose a single node to flip, in such a way that the value

of the resulting solution is as large as possible. We perform this flip even

if the value of the solution decreases relative to w(A, B). We mark the

node that has been flipped and let (A1, B1) denote the resulting solution.

. At the start of phase k, for k > 1, we have a partition (Ak−1, Bk−1); and

k − 1 of the nodes are marked. We choose a single unmarked node to

flip, in such a way that the value of the resulting solution is as large as

possible. (Again, we do this even if the value of the solution decreases as

a result.) We mark the node we flip and let (Ak, Bk) denote the resulting

solution.

. After n phases, each node is marked, indicating that it has been flipped

precisely once. Consequently, the final partition (An, Bn) is actually the

mirror image of the original partition (A, B): We have An = B and Bn = A.

. Finally, the K-L heuristic defines the n − 1 partitions (A1, B1), . . . ,

(An−1, Bn−1) to be the neighbors of (A, B). Thus (A, B) is a local optimum

under the K-L heuristic if and only if w(A, B) ≥ w(Ai, Bi) for 1≤ i ≤ n − 1.

So we see that the K-L heuristic tries a very long sequence of flips, even

while it appears to be making things worse, in the hope that some partition

(Ai, Bi) generated along the way will turn out better than (A, B). But even

though it generates neighbors very different from (A, B), it only performs n flips

in total, and each takes only O(n) time to perform. Thus it is computationally

much more reasonable than the k-flip rule for larger values of k. Moreover, the

K-L heuristic has turned out to be very powerful in practice, despite the fact

that rigorous analysis of its properties has remained largely an open problem.

* 12.6 Classification via Local Search
We now consider a more complex application of local search to the design

of approximation algorithms, related to the Image Segmentation Problem that

we considered as an application of network flow in Section 7.10. The more

complex version of Image Segmentation that we focus on here will serve as

an example where, in order to obtain good performance from a local search

algorithm, one needs to use a rather complex neighborhood structure on the

682 Chapter 12 Local Search

set of solutions. We will find that the natural “state-flipping” neighborhood

that we saw in earlier sections can result in very bad local optima. To obtain

good performance, we will instead use an exponentially large neighborhood.

One problem with such a large neighborhood is that we can no longer afford

to search though all neighbors of the current solution one by one for an

improving solution. Rather, we will need a more sophisticated algorithm to

find an improving neighbor whenever one exists.

The Problem

Recall the basic Image Segmentation Problem that we considered as an appli-

cation of network flow in Section 7.10. There we formulated the problem of

segmenting an image as a labeling problem; the goal was to label (i.e., classify)

each pixel as belonging to the foreground or the background of the image. At

the time, it was clear that this was a very simple formulation of the problem,

and it would be nice to handle more complex labeling tasks—for example,

to segment the regions of an image based on their distance from the camera.

Thus we now consider a labeling problem with more than two labels. In the

process, we will end up with a framework for classification that applies more

broadly than just to the case of pixels in an image.

In setting up the two-label foreground/background segmentation problem,

we ultimately arrived at the following formulation. We were given a graph

G = (V , E) where V corresponded to the pixels of the image, and the goal

was to classify each node in V as belonging to one of two possible classes:

foreground or background. Edges represented pairs of nodes likely to belong to

the same class (e.g., because they were next to each other), and for each edge

(i, j) we were given a separation penalty pij ≥ 0 for placing i and j in different

classes. In addition, we had information about the likelihood of whether a

node or pixel was more likely to belong to the foreground or the background.

These likelihoods translated into penalties for assigning a node to the class

where it was less likely to belong. Then the problem was to find a labeling

of the nodes that minimized the total separation and assignment penalties.

We showed that this minimization problem could be solved via a minimum-

cut computation. For the rest of this section, we will refer to the problem we

defined there as Two-Label Image Segmentation.

Here we will formulate the analogous classification/labeling problem with

more than two classes or labels. This problem will turn out to be NP-hard,

and we will develop a local search algorithm where the local optima are 2-

approximations for the best labeling. The general labeling problem, which we

will consider in this section, is formulated as follows. We are given a graph

G = (V , E) and a set L of k labels. The goal is to label each node in V with one

of the labels in L so as to minimize a certain penalty. There are two competing

12.6 Classification via Local Search 683

forces that will guide the choice of the best labeling. For each edge (i, j) ∈ E,

we have a separation penalty pij ≥ 0 for labeling the two nodes i and j with

different labels. In addition, nodes are more likely to have certain labels than

others. This is expressed through an assignment penalty. For each node i ∈ V

and each label a ∈ L, we have a nonnegative penalty ci(a) ≥ 0 for assigning

label a to node i. (These penalties play the role of the likelihoods from the

Two-Label Image Segmentation Problem, except that here we view them as

costs to be minimized.) The Labeling Problem is to find a labeling f : V → L

that minimizes the total penalty:

�(f) =
∑

i∈V

ci(f (i)) +
∑

(i, j)∈E:f (i)�=f (j)

pij.

Observe that the Labeling Problem with only two labels is precisely the

Image Segmentation Problem from Section 7.10. For three labels, the Labeling

Problem is already NP-hard, though we will not prove this here.

Our goal is to develop a local search algorithm for this problem, in which

local optima are good approximations to the optimal solution. This will also

serve as an illustration of the importance of choosing good neighborhoods

for defining the local search algorithm. There are many possible choices for

neighbor relations, and we’ll see that some work a lot better than others. In

particular, a fairly complex definition of the neighborhoods will be used to

obtain the approximation guarantee.

Designing the Algorithm

A First Attempt: The Single-Flip Rule The simplest and perhaps most natural

choice for neighbor relation is the single-flip rule from the State-Flipping

Algorithm for the Maximum-Cut Problem: Two labelings are neighbors if we

can obtain one from the other by relabeling a single node. Unfortunately, this

neighborhood can lead to quite poor local optima for our problem even when

there are only two labels.

This may be initially surprising, since the rule worked quite well for the

Maximum-Cut Problem. However, our problem is related to the Minimum-Cut

Problem. In fact, Minimum s-t Cut corresponds to a special case when there are

only two labels, and s and t are the only nodes with assignment penalties. It is

not hard to see that this State-Flipping Algorithm is not a good approximation

algorithm for the Minimum-Cut Problem. See Figure 12.5, which indicates how

the edges incident to s may form the global optimum, while the edges incident

to t can form a local optimum that is much worse.

A Closer Attempt: Considering Two Labels at a Time Here we will develop a

local search algorithm in which the neighborhoods are much more elaborate.

One interesting feature of our algorithm is that it allows each solution to have

684 Chapter 12 Local Search

s t

A bad local optimum:

Cutting the two edges incident

to s would be better.

Figure 12.5 An instance of the Minimum s-t Cut Problem, where all edges have

capacity 1.

exponentially many neighbors. This appears to be contrary to the general rule

that “the neighborhood of a solution should not be too large,” as stated in

Section 12.5. However, we will be working with neighborhoods in a more

subtle way here. Keeping the size of the neighborhood small is good if the

plan is to search for an improving local step by brute force; here, however, we

will use a polynomial-time minimum-cut computation to determine whether

any of a solution’s exponentially many neighbors represent an improvement.

The idea of the local search is to use our polynomial-time algorithm

for Two-Label Image Segmentation to find improving local steps. First let’s

consider a basic implementation of this idea that does not always give a good

approximation guarantee. For a labeling f , we pick two labels a, b ∈ L and

restrict attention to the nodes that have labels a or b in labeling f . In a single

local step, we will allow any subset of these nodes to flip labels from a to b, or

from b to a. More formally, two labelings f and f ′ are neighbors if there are two

labels a, b ∈ L such that for all other labels c �∈ {a, b} and all nodes i ∈ V, we

have f (i) = c if and only if f ′(i) = c. Note that a state f can have exponentially

many neighbors, as an arbitrary subset of the nodes labeled a and b can flip

their label. However, we have the following.

(12.8) If a labeling f is not locally optimal for the neighborhood above, then a

neighbor with smaller penalty can be found via k2 minimum-cut computations.

Proof. There are fewer than k2 pairs of distinct labels, so we can try each pair

separately. Given a pair of labels a, b ∈ L, consider the problem of finding an

improved labeling via swapping labels of nodes between labels a and b. This

is exactly the Segmentation Problem for two labels on the subgraph of nodes

that f labels a or b. We use the algorithm developed for Two-Label Image

Segmentation to find the best such relabeling.

12.6 Classification via Local Search 685

s t

z

Figure 12.6 A bad local optimum for the local search algorithm that considers only

two labels at a time.

This neighborhood is much better than the single-flip neighborhood we

considered first. For example, it solves the case of two labels optimally.

However, even with this improved neighborhood, local optima can still be

bad, as shown in Figure 12.6. In this example, there are three nodes s, t, and z

that are each required to keep their initial labels. Each other node lies on one of

the sides of the triangle; it has to get one of the two labels associated with the

nodes at the ends of this side. These requirements can be expressed simply by

giving each node a very large assignment penalty for the labels that we are not

allowing. We define the edge separation penalties as follows: The light edges

in the figure have penalty 1, while the heavy edges have a large separation

penalty of M. Now observe that the labeling in the figure has penalty M + 3

but is locally optimal. The (globally) optimal penalty is only 3 and is obtained

from the labeling in the figure by relabeling both nodes next to s.

A Local Search Neighborhood That Works Next we define a different neigh-

borhood that leads to a good approximation algorithm. The local optimum in

Figure 12.6 may be suggestive of what would be a good neighborhood: We

need to be able to relabel nodes of different labels in a single step. The key is

to find a neighbor relation rich enough to have this property, yet one that still

allows us to find an improving local step in polynomial time.

Consider a labeling f . As part of a local step in our new algorithm, we will

want to do the following. We pick one label a ∈ L and restrict attention to the

686 Chapter 12 Local Search

i je

s

Node e can always be

placed so that at most one

incident edge is cut.

Figure 12.7 The construction

for edge e = (i, j) with a �=

f (i) �= f (j) �= a.

nodes that do not have label a in labeling f . As a single local step, we will

allow any subset of these nodes to change their labels to a. More formally,

for two labelings f and f ′, we say that f ′ is a neighbor of f if there is a label

a ∈ L such that, for all nodes i ∈ V, either f ′(i) = f (i) or f ′(i) = a. Note that this

neighbor relation is not symmetric; that is, we cannot get f back from f ′ via

a single step. We will now show that for any labeling f we can find its best

neighbor via k minimum-cut computations, and further, a local optimum for

this neighborhood is a 2-approximation for the minimum penalty labeling.

Finding a Good Neighbor To find the best neighbor, we will try each label a

separately. Consider a label a. We claim that the best relabeling in which nodes

may change their labels to a can be found via a minimum-cut computation.

The construction of the minimum-cut graph G′ = (V ′, E′) is analogous to

the minimum-cut computation developed for Two-Label Image Segmentation.

There we introduced a source s and a sink t to represent the two labels. Here we

will also introduce a source and a sink, where the source s will represent label

a, while the sink t will effectively represent the alternate option nodes have—

namely, to keep their original labels. The idea will be to find the minimum cut

in G′ and relabel all nodes on the s-side of the cut to label a, while letting all

nodes on the t-side keep their original labels.

For each node of G, we will have a corresponding node in the new set

V ′ and will add edges (i, t) and (s, i) to E′, as was done in Figure 7.18 from

Chapter 7 for the case of two labels. The edge (i, t) will have capacity ci(a), as

cutting the edge (i, t) places node i on the source side and hence corresponds

to labeling node i with label a. The edge (i, s) will have capacity ci(f (i)), if

f (i) �= a, and a very large number M (or +∞) if f (i) = a. Cutting edge (i, t)

places node i on the sink side and hence corresponds to node i retaining its

original label f (i) �= a. The large capacity of M prevents nodes i with f (i) = a

from being placed on the sink side.

In the construction for the two-label problem, we added edges between

the nodes of V and used the separation penalties as capacities. This works

well for nodes that are separated by the cut, or nodes on the source side that

are both labeled a. However, if both i and j are on the sink side of the cut, then

the edge connecting them is not cut, yet i and j are separated if f (i) �= f (j). We

deal with this difficulty by enhancing the construction of G′ as follows. For an

edge (i, j), if f (i) = f (j) or one of i or j is labeled a, then we add an edge (i, j)

to E′ with capacity pij. For the edges e = (i, j) where f (i) �= f (j) and neither has

label a, we’ll have to do something different to correctly encode via the graph

G′ that i and j remain separated even if they are both on the sink side. For each

such edge e, we add an extra node e to V ′ corresponding to edge e, and add

the edges (i, e), (e, j), and (e, s) all with capacity pij. See Figure 12.7 for these

edges.

12.6 Classification via Local Search 687

(12.9) Given a labeling f and a label a, the minimum cut in the graph G′ =

(V ′, E′) corresponds to the minimum-penalty neighbor of labeling f obtained

by relabeling a subset of nodes to label a. As a result, the minimum-penalty

neighbor of f can be found via k minimum-cut computations, one for each label

in L.

Proof. Let (A, B) be an s-t cut in G′. The large value of M ensures that a

minimum-capacity cut will not cut any of these high-capacity edges. Now

consider a node e in G′ corresponding to an edge e = (i, j) ∈ E. The node e ∈ V ′

has three adjacent edges, each with capacity pij. Given any partition of the

other nodes, we can place e so that at most one of these three edges is cut.

We’ll call a cut good if no edge of capacity M is cut and, for all the nodes

corresponding to edges in E, at most one of the adjacent edges is cut. So far

we have argued that all minimum-capacity cuts are good.

Good s-t cuts in G′ are in one-to-one correspondence with relabelings of f

obtained by changing the label of a subset of nodes to a. Consider the capacity

of a good cut. The edges (s, i) and (i, t) contribute exactly the assignment

penalty to the capacity of the cut. The edges (i, j) directly connecting nodes in

V contribute exactly the separation penalty of the nodes in the corresponding

labeling: pij if they are separated, and 0 otherwise. Finally, consider an edge

e = (i, j) with a corresponding node e ∈ V ′. If i and j are both on the source side,

none of the three edges adjacent to e are cut, and in all other cases exactly one

of these edges is cut. So again, the three edges adjacent to e contribute to the cut

exactly the separation penalty between i and j in the corresponding labeling.

As a result, the capacity of a good cut is exactly the same as the penalty of the

corresponding labeling, and so the minimum-capacity cut corresponds to the

best relabeling of f .

Analyzing the Algorithm

Finally, we need to consider the quality of the local optima under this definition

of the neighbor relation. Recall that in our previous two attempts at defining

neighborhoods, we found that they can both lead to bad local optima. Now, by

contrast, we’ll show that any local optimum under our new neighbor relation

is a 2-approximation to the minimum possible penalty.

To begin the analysis, consider an optimal labeling f ∗, and for a label a ∈ L

let V∗
a = {i : f ∗(i) = a} be the set of nodes labeled by a in f ∗. Consider a locally

optimal labeling f . We obtain a neighbor fa of labeling f by starting with f and

relabeling all nodes in V∗
a to a. The labeling f is locally optimal, and hence this

neighbor fa has no smaller penalty: �(fa) ≥ �(f). Now consider the difference

�(fa) − �(f), which we know is nonnegative. What quantities contribute to

688 Chapter 12 Local Search

this difference? The only possible change in the assignment penalties could

come from nodes in V∗
a: for each i ∈ V∗

a, the change is ci(f
∗(i)) − ci(f (i)).

The separation penalties differ between the two labelings only in edges (i, j)

that have at least one end in V∗
a. The following inequality accounts for these

differences.

(12.10) For a labeling f and its neighbor fa, we have

�(fa) − �(f) ≤
∑

i∈V∗
a

[

ci(f
∗(i)) − ci(f (i))

]

+
∑

(i,j) leaving V∗
a

pij −
∑

(i, j) in or leaving V∗
a

f (i)�=f (j)

pij.

Proof. The change in the assignment penalties is exactly
∑

i∈V∗
a

ci(f
∗(i)) −

ci(f (i)). The separation penalty for an edge (i, j) can differ between the two

labelings only if edge (i, j) has at least one end in V∗
a. The total separation

penalty of labeling f for such edges is exactly
∑

(i, j) in or leaving V∗
a

f (i)�=f (j)

pij ,

while the labeling fa has a separation penalty of at most
∑

(i, j) leaving V∗
a

pij

for these edges. (Note that this latter expression is only an upper bound, since

an edge (i, j) leaving V∗
a that has its other end in a does not contribute to the

separation penalty of fa.)

Now we are ready to prove our main claim.

(12.11) For any locally optimal labeling f , and any other labeling f ∗, we have

�(f) ≤ 2�(f ∗).

Proof. Let fa be the neighbor of f defined previously by relabeling nodes to

label a. The labeling f is locally optimal, so we have �(fa) − �(f) ≥ 0 for

all a ∈ L. We use (12.10) to bound �(fa) − �(f) and then add the resulting

inequalities for all labels to obtain the following:

0 ≤
∑

a∈L

(�(fa) − �(f))

≤
∑

a∈L

⎡

⎢

⎢

⎣

∑

i∈V∗
a

ci(f
∗(i)) − ci(f (i)) +

∑

(i, j) leaving V∗
a

pij −
∑

(i, j) in or leaving V∗
a

f (i) �=f (j)

pij

⎤

⎥

⎥

⎦

.

12.6 Classification via Local Search 689

We will rearrange the inequality by grouping the positive terms on the left-

hand side and the negative terms on the right-hand side. On the left-hand

side, we get ci(f
∗(i)) for all nodes i, which is exactly the assignment penalty

of f ∗. In addition, we get the term pij twice for each of the edges separated by

f ∗ (once for each of the two labels f ∗(i) and f ∗(j)).

On the right-hand side, we get ci(f (i)) for each node i, which is exactly the

assignment penalty of f . In addition, we get the terms pij for edges separated

by f . We get each such separation penalty at least once, and possibly twice if

it is also separated by f ∗.

In summary, we get the following.

2�(f ∗) ≥
∑

a∈L

⎡

⎣

∑

i∈V∗
a

ci(f
∗(i)) +

∑

(i, j) leaving V∗
a

pij

⎤

⎦

≥
∑

a∈L

⎡

⎢

⎢

⎣

∑

i∈V∗
a

ci(f (i)) +
∑

(i, j) in or leaving V∗
a

f (i) �=f (j)

pij

⎤

⎥

⎥

⎦

≥ �(f),

proving the claimed bound.

We proved that all local optima are good approximations to the labeling

with minimum penalty. There is one more issue to consider: How fast does

the algorithm find a local optimum? Recall that in the case of the Maximum-

Cut Problem, we had to resort to a variant of the algorithm that accepts only

big improvements, as repeated local improvements may not run in polynomial

time. The same is also true here. Let ǫ > 0 be a constant. For a given labeling f ,

we will consider a neighboring labeling f ′ a significant improvement if �(f ′) ≤

(1− ǫ/3k)�(f). To make sure the algorithm runs in polynomial time, we should

only accept significant improvements, and terminate when no significant

improvements are possible. After at most ǫ−1k significant improvements, the

penalty decreases by a constant factor; hence the algorithm will terminate in

polynomial time. It is not hard to adapt the proof of (12.11) to establish the

following.

(12.12) For any fixed ǫ > 0, the version of the local search algorithm that only

accepts significant improvements terminates in polynomial time and results in

a labeling f such that �(f) ≤ (2 + ǫ)�(f ∗) for any other labeling f ∗.

690 Chapter 12 Local Search

12.7 Best-Response Dynamics and Nash Equilibria
Thus far we have been considering local search as a technique for solving

optimization problems with a single objective—in other words, applying local

operations to a candidate solution so as to minimize its total cost. There are

many settings, however, where a potentially large number of agents, each with

its own goals and objectives, collectively interact so as to produce a solution

to some problem. A solution that is produced under these circumstances often

reflects the “tug-of-war” that led to it, with each agent trying to pull the solution

in a direction that is favorable to it. We will see that these interactions can be

viewed as a kind of local search procedure; analogues of local minima have a

natural meaning as well, but having multiple agents and multiple objectives

introduces new challenges.

The field of game theory provides a natural framework in which to talk

about what happens in such situations, when a collection of agents interacts

strategically—in other words, with each trying to optimize an individual ob-

jective function. To illustrate these issues, we consider a concrete application,

motivated by the problem of routing in networks; along the way, we will in-

troduce some notions that occupy central positions in the area of game theory

more generally.

The Problem

In a network like the Internet, one frequently encounters situations in which

a number of nodes all want to establish a connection to a single source

node s. For example, the source s may be generating some kind of data

stream that all the given nodes want to receive, as in a style of one-to-many

network communication known as multicast. We will model this situation by

representing the underlying network as a directed graph G = (V , E), with a cost

ce ≥ 0 on each edge. There is a designated source node s ∈ V and a collection

of k agents located at distinct terminal nodes t1, t2, . . . , tk ∈ V. For simplicity,

we will not make a distinction between the agents and the nodes at which

they reside; in other words, we will think of the agents as being t1, t2, . . . , tk.

Each agent tj wants to construct a path Pj from s to tj using as little total cost

as possible.

Now, if there were no interaction among the agents, this would consist of

k separate shortest-path problems: Each agent tj would find an s-tj path for

which the total cost of all edges is minimized, and use this as its path Pj. What

makes this problem interesting is the prospect of agents being able to share the

costs of edges. Suppose that after all the agents have chosen their paths, agent

tj only needs to pay its “fair share” of the cost of each edge e on its path; that

is, rather than paying ce for each e on Pi, it pays ce divided by the number of

12.7 Best-Response Dynamics and Nash Equilibria 691

agents whose paths contain e. In this way, there is an incentive for the agents

to choose paths that overlap, since they can then benefit by splitting the costs

of edges. (This sharing model is appropriate for settings in which the presence

of multiple agents on an edge does not significantly degrade the quality of

transmission due to congestion or increased latency. If latency effects do come

into play, then there is a countervailing penalty for sharing; this too leads to

interesting algorithmic questions, but we will stick to our current focus for

now, in which sharing comes with benefits only.)

Best-Response Dynamics and Nash Equilibria: Definitions and
Examples

To see how the option of sharing affects the behavior of the agents, let’s begin

by considering the pair of very simple examples in Figure 12.8. In example (a),

each of the two agents has two options for constructing a path: the middle route

through v, and the outer route using a single edge. Suppose that each agent

starts out with an initial path but is continually evaluating the current situation

to decide whether it’s possible to switch to a better path.

In example (a), suppose the two agents start out using their outer paths.

Then t1 sees no advantage in switching paths (since 4 < 5 + 1), but t2 does

(since 8 > 5 + 1), and so t2 updates its path by moving to the middle. Once

this happens, things have changed from the perspective of t1: There is suddenly

an advantage for t1 in switching as well, since it now gets to share the cost of

the middle path, and hence its cost to use the middle path becomes 2.5+ 1< 4.

Thus it will switch to the middle path. Once we are in a situation where both

s

v

t2t1

s

t

4
5

8

1 1

1 + ε k

k agents

(a) (b)

Figure 12.8 (a) It is in the two agents’ interest to share the middle path. (b) It would

be better for all the agents to share the edge on the left. But if all k agents start on the

right-hand edge, then no one of them will want to unilaterally move from right to left;

in other words, the solution in which all agents share the edge on the right is a bad

Nash equilibrium.

692 Chapter 12 Local Search

sides are using the middle path, neither has an incentive to switch, and so this

is a stable solution.

Let’s discuss two definitions from the area of game theory that capture

what’s going on in this simple example. While we will continue to focus on

our particular multicast routing problem, these definitions are relevant to any

setting in which multiple agents, each with an individual objective, interact to

produce a collective solution. As such, we will phrase the definitions in these

general terms.

. First of all, in the example, each agent was continually prepared to

improve its solution in response to changes made by the other agent(s).

We will refer to this process as best-response dynamics. In other words,

we are interested in the dynamic behavior of a process in which each

agent updates based on its best response to the current situation.

. Second, we are particularly interested in stable solutions, where the best

response of each agent is to stay put. We will refer to such a solution,

from which no agent has an incentive to deviate, as a Nash equilibrium.

(This is named after the mathematician John Nash, who won the Nobel

Prize in economics for his pioneering work on this concept.) Hence,

in example (a), the solution in which both agents use the middle path

is a Nash equilibrium. Note that the Nash equilibria are precisely the

solutions at which best-response dynamics terminate.

The example in Figure 12.8(b) illustrates the possibility of multiple Nash

equilibria. In this example, there are k agents that all reside at a common node

t (that is, t1 = t2 = . . . = tk = t), and there are two parallel edges from s to t with

different costs. The solution in which all agents use the left-hand edge is a Nash

equilibrium in which all agents pay (1+ ε)/k. The solution in which all agents

use the right-hand edge is also a Nash equilibrium, though here the agents each

pay k/k = 1. The fact that this latter solution is a Nash equilibrium exposes an

important point about best-response dynamics. If the agents could somehow

synchronously agree to move from the right-hand edge to the left-hand one,

they’d all be better off. But under best-response dynamics, each agent is only

evaluating the consequences of a unilateral move by itself. In effect, an agent

isn’t able to make any assumptions about future actions of other agents—in

an Internet setting, it may not even know anything about these other agents

or their current solutions—and so it is only willing to perform updates that

lead to an immediate improvement for itself.

To quantify the sense in which one of the Nash equilibria in Figure 12.8(b)

is better than the other, it is useful to introduce one further definition. We

say that a solution is a social optimum if it minimizes the total cost to all

agents. We can think of such a solution as the one that would be imposed by

12.7 Best-Response Dynamics and Nash Equilibria 693

s

v

t2t1

3
5

5

1 1

Figure 12.9 A network in

which the unique Nash equi-

libriumdiffers from the social

optimum.

a benevolent central authority that viewed all agents as equally important and

hence evaluated the quality of a solution by summing the costs they incurred.

Note that in both (a) and (b), there is a social optimum that is also a Nash

equilibrium, although in (b) there is also a second Nash equilibrium whose

cost is much greater.

The Relationship to Local Search

Around here, the connections to local search start to come into focus. A set of

agents following best-response dynamics are engaged in some kind of gradient

descent process, exploring the “landscape” of possible solutions as they try to

minimize their individual costs. The Nash equilibria are the natural analogues

of local minima in this process: solutions from which no improving move is

possible. And the “local” nature of the search is clear as well, since agents are

only updating their solutions when it leads to an immediate improvement.

Having said all this, it’s important to think a bit further and notice the

crucial ways in which this differs from standard local search. In the beginning

of this chapter, it was easy to argue that the gradient descent algorithm for

a combinatorial problem must terminate at a local minimum: each update

decreased the cost of the solution, and since there were only finitely many

possible solutions, the sequence of updates could not go on forever. In other

words, the cost function itself provided the progress measure we needed to

establish termination.

In best-response dynamics, on the other hand, each agent has its own

personal objective function to minimize, and so it’s not clear what overall

“progress” is being made when, for example, agent ti decides to update its

path from s. There’s progress for ti, of course, since its cost goes down, but

this may be offset by an even larger increase in the cost to some other agent.

Consider, for example, the network in Figure 12.9. If both agents start on the

middle path, then t1 will in fact have an incentive to move to the outer path; its

cost drops from 3.5 to 3, but in the process the cost of t2 increases from 3.5 to 6.

(Once this happens, t2 will also move to its outer path, and this solution—with

both nodes on the outer paths—is the unique Nash equilibrium.)

There are examples, in fact, where the cost-increasing effects of best-

response dynamics can be much worse than this. Consider the situation in

Figure 12.10, where we have k agents that each have the option to take a

common outer path of cost 1+ ε (for some small number ε > 0), or to take their

own alternate path. The alternate path for tj has cost 1/j. Now suppose we start

with a solution in which all agents are sharing the outer path. Each agent pays

(1+ ε)/k, and this is the solution that minimizes the total cost to all agents.

But running best-response dynamics starting from this solution causes things

to unwind rapidly. First tk switches to its alternate path, since 1/k < (1+ ε)/k.

694 Chapter 12 Local Search

s

tk–1t2

1

0

1 + εt1 t3 tk

0 0 0 0

1
2

1
3

1
k–1

1
k The optimal solution

costs 1 + ε, while

the unique Nash

equilibrium costs

much more.

Figure 12.10 A network in which the unique Nash equilibrium costs H(k) = �(log k)

times more than the social optimum.

As a result of this, there are now only k − 1 agents sharing the outer path,

and so tk−1 switches to its alternate path, since 1/(k − 1) < (1+ ε)/(k − 1).

After this, tk−2 switches, then tk−3, and so forth, until all k agents are using

the alternate paths directly from s. Things come to a halt here, due to the

following fact.

(12.13) The solution in Figure 12.10, in which each agent uses its direct path

from s, is a Nash equilibrium, and moreover it is the unique Nash equilibrium

for this instance.

Proof. To verify that the given solution is a Nash equilibrium, we simply need

to check that no agent has an incentive to switch from its current path. But this

is clear, since all agents are paying at most 1, and the only other option—the

(currently vacant) outer path—has cost 1+ ε.

Now suppose there were some other Nash equilibrium. In order to be

different from the solution we have just been considering, it would have to

involve at least one of the agents using the outer path. Let tj1, tj2, . . . , tjℓ be

the agents using the outer path, where j1 < j2 < . . . < jℓ. Then all these agents

are paying (1+ ε)/ℓ. But notice that jℓ ≥ ℓ, and so agent tjℓ has the option to

pay only 1/jℓ ≤ 1/ℓ by using its alternate path directly from s. Hence tjℓ has an

incentive to deviate from the current solution, and hence this solution cannot

be a Nash equilibrium.

Figure 12.8(b) already illustrated that there can exist a Nash equilibrium

whose total cost is much worse than that of the social optimum, but the

examples in Figures 12.9 and 12.10 drive home a further point: The total cost

to all agents under even the most favorable Nash equilibrium solution can be

12.7 Best-Response Dynamics and Nash Equilibria 695

worse than the total cost under the social optimum. How much worse? The

total cost of the social optimum in this example is 1+ ε, while the cost of the

unique Nash equilibrium is 1+ 1
2 + 1

3 + . . . + 1
k

=
∑k

i=1
1
i . We encountered this

expression in Chapter 11, where we defined it to be the harmonic number H(k)

and showed that its asymptotic value is H(k) = �(log k).

These examples suggest that one can’t really view the social optimum as

the analogue of the global minimum in a traditional local search procedure. In

standard local search, the global minimum is always a stable solution, since no

improvement is possible. Here the social optimum can be an unstable solution,

since it just requires one agent to have an interest in deviating.

Two Basic Questions

Best-response dynamics can exhibit a variety of different behaviors, and we’ve

just seen a range of examples that illustrate different phenomena. It’s useful at

this point to step back, assess our current understanding, and ask some basic

questions. We group these questions around the following two issues.

. The existence of a Nash equilibrium. At this point, we actually don’t

have a proof that there even exists a Nash equilibrium solution in every

instance of our multicast routing problem. The most natural candidate

for a progress measure, the total cost to all agents, does not necessarily

decrease when a single agent updates its path.

Given this, it’s not immediately clear how to argue that the best-

response dynamics must terminate. Why couldn’t we get into a cycle

where agent t1 improves its solution at the expense of t2, then t2 improves

its solution at the expense of t1, and we continue this way forever? Indeed,

it’s not hard to define other problems in which exactly this can happen

and in which Nash equilibria don’t exist. So if we want to argue that best-

response dynamics leads to a Nash equilibrium in the present case, we

need to figure out what’s special about our routing problem that causes

this to happen.

. The price of stability. So far we’ve mainly considered Nash equilibria

in the role of “observers”: essentially, we turn the agents loose on the

graph from an arbitrary starting point and watch what they do. But if we

were viewing this as protocol designers, trying to define a procedure by

which agents could construct paths from s, we might want to pursue the

following approach. Given a set of agents, located at nodes t1, t2, . . . , tk,

we could propose a collection of paths, one for each agent, with two

properties.

(i) The set of paths forms a Nash equilibrium solution; and

(ii) Subject to (i), the total cost to all agents is as small as possible.

696 Chapter 12 Local Search

Of course, ideally we’d like just to have the smallest total cost, as this is

the social optimum. But if we propose the social optimum and it’s not a

Nash equilibrium, then it won’t be stable: Agents will begin deviating and

constructing new paths. Thus properties (i) and (ii) together represent

our protocol’s attempt to optimize in the face of stability, finding the best

solution from which no agent will want to deviate.

We therefore define the price of stability, for a given instance of the

problem, to be the ratio of the cost of the best Nash equilibrium solution

to the cost of the social optimum. This quantity reflects the blow-up in

cost that we incur due to the requirement that our solution must be stable

in the face of the agents’ self-interest.

Note that this pair of questions can be asked for essentially any problem

in which self-interested agents produce a collective solution. For our multicast

routing problem, we now resolve both these questions. Essentially, we will

find that the example in Figure 12.10 captures some of the crucial aspects

of the problem in general. We will show that for any instance, best-response

dynamics starting from the social optimum leads to a Nash equilibrium whose

cost is greater by at most a factor of H(k) = �(log k).

Finding a Good Nash Equilibrium

We focus first on showing that best-response dynamics in our problem always

terminates with a Nash equilibrium. It will turn out that our approach to

this question also provides the necessary technique for bounding the price

of stability.

The key idea is that we don’t need to use the total cost to all agents as the

progress measure against which to bound the number of steps of best-response

dynamics. Rather, any quantity that strictly decreases on a path update by

any agent, and which can only decrease a finite number of times, will work

perfectly well. With this in mind, we try to formulate a measure that has this

property. The measure will not necessarily have as strong an intuitive meaning

as the total cost, but this is fine as long as it does what we need.

We first consider in more detail why just using the total agent cost doesn’t

work. Suppose, to take a simple example, that agent tj is currently sharing, with

x other agents, a path consisting of the single edge e. (In general, of course,

the agents’ paths will be longer than this, but single-edge paths are useful to

think about for this example.) Now suppose that tj decides it is in fact cheaper

to switch to a path consisting of the single edge f , which no agent is currently

using. In order for this to be the case, it must be that cf < ce/(x + 1). Now, as

a result of this switch, the total cost to all agents goes up by cf : Previously,

12.7 Best-Response Dynamics and Nash Equilibria 697

x + 1 agents contributed to the cost ce, and no one was incurring the cost cf ;

but, after the switch, x agents still collectively have to pay the full cost ce, and

tj is now paying an additional cf .

In order to view this as progress, we need to redefine what “progress”

means. In particular, it would be useful to have a measure that could offset

the added cost cf via some notion that the overall “potential energy” in the

system has dropped by ce/(x + 1). This would allow us to view the move by

tj as causing a net decrease, since we have cf < ce/(x + 1). In order to do this,

we could maintain a “potential” on each edge e, with the property that this

potential drops by ce/(x + 1) when the number of agents using e decreases

from x + 1 to x. (Correspondingly, it would need to increase by this much

when the number of agents using e increased from x to x + 1.)

Thus, our intuition suggests that we should define the potential so that,

if there are x agents on an edge e, then the potential should decrease by ce/x

when the first one stops using e, by ce/(x − 1) when the next one stops using

e, by ce/(x − 2) for the next one, and so forth. Setting the potential to be

ce(1/x + 1/(x − 1) + . . . + 1/2 + 1) = ce · H(x) is a simple way to accomplish

this. More concretely, we define the potential of a set of paths P1, P2, . . . , Pk,

denoted �(P1, P2, . . . , Pk), as follows. For each edge e, let xe denote the number

of agents whose paths use the edge e. Then

�(P1, P2, . . . , Pk) =
∑

e∈E

ce · H(xe).

(We’ll define the harmonic number H(0) to be 0, so that the contribution of

edges containing no paths is 0.)

The following claim establishes that � really works as a progress measure.

(12.14) Suppose that the current set of paths is P1, P2, . . . , Pk, and agent tj up-

dates its path from Pj to P′
j. Then the new potential �(P1, . . . , Pj−1, P′

j , Pj+1, . . . ,

Pk) is strictly less than the old potential �(P1, . . . , Pj−1, Pj , Pj+1, . . . , Pk).

Proof. Before tj switched its path from Pj to P′
j, it was paying

∑

e∈Pj
ce/xe,

since it was sharing the cost of each edge e with xe − 1 other agents. After the

switch, it continues to pay this cost on the edges in the intersection Pj ∩ P′
j,

and it also pays cf/(xf + 1) on each edge f ∈ P′
j −Pj. Thus the fact that tj viewed

this switch as an improvement means that

∑

f∈P′
j
−Pj

cf

xf + 1
<

∑

e∈Pj−P′
j

ce

xe

.

698 Chapter 12 Local Search

Now let’s ask what happens to the potential function �. The only edges

on which it changes are those in P′
j −Pj and those in Pj−P′

j. On the former set,

it increases by

∑

f∈P′
j
−Pj

cf [H(xf + 1) − H(xf)]=
∑

f∈P′
j
−Pj

cf

xf + 1
,

and on the latter set, it decreases by

∑

e∈Pj−P′
j

ce[H(xe) − H(xe − 1)]=
∑

e∈Pj−P′
j

ce

xe

.

So the criterion that tj used for switching paths is precisely the statement that

the total increase is strictly less than the total decrease, and hence the potential

� decreases as a result of tj’s switch.

Now there are only finitely many ways to choose a path for each agent tj,

and (12.14) says that best-response dynamics can never revisit a set of paths

P1, . . . , Pk once it leaves it due to an improving move by some agent. Thus we

have shown the following.

(12.15) Best-response dynamics always leads to a set of paths that forms a

Nash equilibrium solution.

Bounding the Price of Stability Our potential function � also turns out to

be very useful in providing a bound on the price of stability. The point is that,

although � is not equal to the total cost incurred by all agents, it tracks it

reasonably closely.

To see this, let C(P1, . . . , Pk) denote the total cost to all agents when the

selected paths are P1, . . . , Pk. This quantity is simply the sum of ce over all

edges that appear in the union of these paths, since the cost of each such edge

is completely covered by the agents whose paths contain it.

Now the relationship between the cost function C and the potential func-

tion � is as follows.

(12.16) For any set of paths P1, . . . , Pk, we have

C(P1, . . . , Pk) ≤ �(P1, . . . , Pk) ≤ H(k) · C(P1, . . . , Pk).

Proof. Recall our notation in which xe denotes the number of paths containing

edge e. For the purposes of comparing C and �, we also define E+ to be the

set of all edges that belong to at least one of the paths P1, . . . , Pk. Then, by

the definition of C, we have C(P1, . . . , Pk) =
∑

e∈E+ ce.

12.7 Best-Response Dynamics and Nash Equilibria 699

A simple fact to notice is that xe ≤ k for all e. Now we simply write

C(P1, . . . , Pk) =
∑

e∈E+

ce ≤
∑

e∈E+

ceH(xe) = �(P1, . . . , Pk)

and

�(P1, . . . , Pk) =
∑

e∈E+

ceH(xe) ≤
∑

e∈E+

ceH(k) = H(k) · C(P1, . . . , Pk).

Using this, we can give a bound on the price of stability.

(12.17) In every instance, there is a Nash equilibrium solution for which the

total cost to all agents exceeds that of the social optimum by at most a factor of

H(k).

Proof. To produce the desired Nash equilibrium, we start from a social op-

timum consisting of paths P∗
1 , . . . , P∗

k
and run best-response dynamics. By

(12.15), this must terminate at a Nash equilibrium P1, . . . , Pk.

During this run of best-response dynamics, the total cost to all agents may

have been going up, but by (12.14) the potential function was decreasing.

Thus we have �(P1, . . . , Pk) ≤ �(P∗
1 , . . . , P∗

k
).

This is basically all we need since, for any set of paths, the quantities C

and � differ by at most a factor of H(k). Specifically,

C(P1, . . . , Pk) ≤ �(P1, . . . , Pk) ≤ �(P∗
1 , . . . , P∗

k) ≤ H(k) · C(P∗
1 , . . . , P∗

k).

Thus we have shown that a Nash equilibrium always exists, and there is

always a Nash equilibrium whose total cost is within an H(k) factor of the

social optimum. The example in Figure 12.10 shows that it isn’t possible to

improve on the bound of H(k) in the worst case.

Although this wraps up certain aspects of the problem very neatly, there

are a number of questions here for which the answer isn’t known. One

particularly intriguing question is whether it’s possible to construct a Nash

equilibrium for this problem in polynomial time. Note that our proof of the

existence of a Nash equilibrium argued simply that as best-response dynamics

iterated through sets of paths, it could never revisit the same set twice, and

hence it could not run forever. But there are exponentially many possible sets

of paths, and so this does not give a polynomial-time algorithm. Beyond the

question of finding any Nash equilibrium efficiently, there is also the open

question of efficiently finding a Nash equilibrium that achieves a bound of

H(k) relative to the social optimum, as guaranteed by (12.17).

It’s also important to reiterate something that we mentioned earlier: It’s

not hard to find problems for which best-response dynamics may cycle forever

700 Chapter 12 Local Search

and for which Nash equilibria do not necessarily exist. We were fortunate

here that best-response dynamics could be viewed as iteratively improving a

potential function that guaranteed our progress toward a Nash equilibrium,

but the point is that potential functions like this do not exist for all problems

in which agents interact.

Finally, it’s interesting to compare what we’ve been doing here to a prob-

lem that we considered earlier in this chapter: finding a stable configuration

in a Hopfield network. If you recall the discussion of that earlier problem, we

analyzed a process in which each node “flips” between two possible states,

seeking to increase the total weight of “good” edges incident to it. This can

in fact be viewed as an instance of best-response dynamics for a problem in

which each node has an objective function that seeks to maximize this mea-

sure of good edge weight. However, showing the convergence of best-response

dynamics for the Hopfield network problem was much easier than the chal-

lenge we faced here: There it turned out that the state-flipping process was

in fact a “disguised” form of local search with an objective function obtained

simply by adding together the objective functions of all nodes—in effect, the

analogue of the total cost to all agents served as a progress measure. In the

present case, it was precisely because this total cost function did not work

as a progress measure that we were forced to embark on the more complex

analysis described here.

Solved Exercises

Solved Exercise 1

The Center Selection Problem from Chapter 11 is another case in which one

can study the performance of local search algorithms.

Here is a simple local search approach to Center Selection (indeed, it’s a

common strategy for a variety of problems that involve locating facilities). In

this problem, we are given a set of sites S = {s1, s2, . . . , sn} in the plane, and we

want to choose a set of k centers C = {c1, c2, . . . , ck} whose covering radius—

the farthest that people in any one site must travel to their nearest center—is

as small as possible.

We start by arbitrarily choosing k points in the plane to be the centers

c1, c2, . . . , ck. We now alternate the following two steps.

(i) Given the set of k centers c1, c2, . . . , ck, we divide S into k sets: For

i = 1, 2, . . . , k, we define Si to be the set of all the sites for which ci is

the closest center.

(ii) Given this division of S into k sets, construct new centers that will be as

“central” as possible relative to them. For each set Si, we find the smallest

Solved Exercises 701

circle in the plane that contains all points in Si, and define center ci to

be the center of this circle.

If steps (i) and (ii) cause the covering radius to strictly decrease, then we

perform another iteration; otherwise the algorithm stops.

The alternation of steps (i) and (ii) is based on the following natural

interplay between sites and centers. In step (i) we partition the sites as well as

possible given the centers; and then in step (ii) we place the centers as well

as possible given the partition of the sites. In addition to its role as a heuristic

for placing facilities, this type of two-step interplay is also the basis for local

search algorithms in statistics, where (for reasons we won’t go into here) it is

called the Expectation Maximization approach.

(a) Prove that this local search algorithm eventually terminates.

(b) Consider the following statement.

There is an absolute constant b > 1 (independent of the particular input

instance), so when the local search algorithm terminates, the covering

radius of its solution is at most b times the optimal covering radius.

Decide whether you think this statement is true or false, and give a proof

of either the statement or its negation.

Solution To prove part (a), one’s first thought is the following: The set of

covering radii decreases in each iteration; it can’t drop below the optimal

covering radius; and so the iterations must terminate. But we have to be a

bit careful, since we’re dealing with real numbers. What if the covering radii

decreased in every iteration, but by less and less, so that the algorithm was

able to run arbitrarily long as its covering radii converged to some value from

above?

It’s not hard to take care of this concern, however. Note that the covering

radius at the end of step (ii) in each iteration is completely determined by the

current partition of the sites into S1, S2, . . . , Sk. There are a finite number of

ways to partition the sites into k sets, and if the local search algorithm ran

for more than this number of iterations, it would have to produce the same

partition in two of these iterations. But then it would have the same covering

radius at the end of each of these iterations, and this contradicts the assumption

that the covering radius strictly decreases from each iteration to the next.

This proves that the algorithm always terminates. (Note that it only gives

an exponential bound on the number of iterations, however, since there are

exponentially many ways to partition the sites into k sets.)

To disprove part (b), it would be enough to find a run of the algorithm in

which the iterations gets “stuck” in a configuration with a very large covering

radius. This is not very hard to do. For any constant b > 1, consider a set S

702 Chapter 12 Local Search

of four points in the plane that form the corners of a tall, narrow rectangle of

width w and height h = 2bw. For example, we could have the four points be

(0, 0), (0, h), (w, h), (w, 0).

Now suppose k = 2, and we start the two centers anywhere to the left and

right of the rectangle, respectively (say, at (−1, h/2) and (w + 1, h/2)). The

first iteration proceeds as follows.

. Step (i) will divide S into the two points S1 on the left side of the rectangle

(with x-coordinate 0) and the two points S2 on the right side of the

rectangle (with x-coordinate w).

. Step (ii) will place centers at the midpoints of S1 and S2 (i.e., at (0, h/2)

and (w, h/2)).

We can check that in the next iteration, the partition of S will not change, and

so the locations of the centers will not change; the algorithm terminates here

at a local minimum.

The covering radius of this solution is h/2. But the optimal solution would

place centers at the midpoints of the top and bottom sides of the rectangle, for a

covering radius of w/2. Thus the covering radius of our solution is h/w = 2b > b

times that of the optimum.

Exercises

1. Consider the problem of finding a stable state in a Hopfield neural

network, in the special case when all edge weights are positive. This

corresponds to the Maximum-Cut Problem that we discussed earlier in

the chapter: For every edge e in the graph G, the endpoints of G would

prefer to have opposite states.

Now suppose the underlying graph G is connected and bipartite; the

nodes can be partitioned into sets X and Y so that each edge has one

end in X and the other in Y. Then there is a natural “best” configuration

for the Hopfield net, in which all nodes in X have the state +1 and all

nodes in Y have the state −1. This way, all edges are good, in that their

ends have opposite states.

The question is: In this special case, when the best configuration is

so clear, will the State-Flipping Algorithm described in the text (as long

as there is an unsatisfied node, choose one and flip its state) always find

this configuration? Give a proof that it will, or an example of an input

instance, a starting configuration, and an execution of the State-Flipping

Algorithm that terminates at a configuration in which not all edges are

good.

Exercises 703

2. Recall that for a problem in which the goal is to maximize some under-

lying quantity, gradient descent has a natural “upside-down” analogue,

in which one repeatedly moves from the current solution to a solution

of strictly greater value. Naturally, we could call this a gradient ascent

algorithm. (Often in the literature you’ll also see such methods referred

to as hill-climbing algorithms.)

By straight symmetry, the observations we’ve made in this chapter

about gradient descent carry over to gradient ascent: For many problems

you can easily end up with a local optimum that is not very good. But

sometimes one encounters problems—as we saw, for example, with

the Maximum-Cut and Labeling Problems—for which a local search

algorithm comes with a very strong guarantee: Every local optimum is

close in value to the global optimum. We now consider the Bipartite

Matching Problem and find that the same phenomenon happens here as

well.

Thus, consider the following Gradient Ascent Algorithm for finding

a matching in a bipartite graph.

As long as there is an edge whose endpoints are unmatched, add it to

the current matching. When there is no longer such an edge, terminate

with a locally optimal matching.

(a) Give an example of a bipartite graph G for which this gradient ascent

algorithm does not return the maximum matching.

(b) Let M and M ′ be matchings in a bipartite graph G. Suppose that

|M ′| > 2|M|. Show that there is an edge e′ ∈ M ′ such that M ∪ {e′} is

a matching in G.

(c) Use (b) to conclude that any locally optimal matching returned by

the gradient ascent algorithm in a bipartite graph G is at least half

as large as a maximum matching in G.

3. Suppose you’re consulting for a biotech company that runs experiments

on two expensive high-throughput assay machines, each identical, which

we’ll label M1 and M2. Each day they have a number of jobs that they

need to do, and each job has to be assigned to one of the two machines.

The problem they need help on is how to assign the jobs to machines to

keep the loads balanced each day. The problem is stated as follows. There

are n jobs, and each job j has a required processing time tj. They need

to partition the jobs into two groups A and B, where set A is assigned

to M1 and set B to M2. The time needed to process all of the jobs on the

two machines is T1 =
∑

j∈A tj and T2 =
∑

j∈B tj. The problem is to have

the two machines work roughly for the same amounts of time—that is,

to minimize |T1 − T2|.

704 Chapter 12 Local Search

A previous consultant showed that the problem is NP-hard (by a

reduction from Subset Sum). Now they are looking for a good local search

algorithm. They propose the following. Start by assigning jobs to the

two machines arbitrarily (say jobs 1, . . . , n/2 to M1, the rest to M2). The

local moves are to move a single job from one machine to the other, and

we only move jobs if the move decreases the absolute difference in the

processing times. You are hired to answer some basic questions about

the performance of this algorithm.

(a) The first question is: How good is the solution obtained? Assume

that there is no single job that dominates all the processing time—

that is, that tj ≤ 1
2

∑n
i=1 ti for all jobs j. Prove that for every locally

optimal solution, the times the two machines operate are roughly

balanced: 1
2T1 ≤ T2 ≤ 2T1.

(b) Next you worry about the running time of the algorithm: How often

will jobs be moved back and forth between the two machines? You

propose the following small modification in the algorithm. If, in

a local move, many different jobs can move from one machine to

the other, then the algorithm should always move the job j with

maximum tj. Prove that, under this variant, each job will move at

most once. (Hence the local search terminates in at most n moves.)

(c) Finally, they wonder if they should work on better algorithms. Give

an example in which the local search algorithm above will not lead

to an optimal solution.

4. Consider the Load Balancing Problem from Section 11.1. Some friends

of yours are running a collection of Web servers, and they’ve designed

a local search heuristic for this problem, different from the algorithms

described in Chapter 11.

Recall that we have m machines M1, . . . , Mm, and we must assign

each job to a machine. The load of the ith job is denoted ti. The makespan

of an assignment is the maximum load on any machine:

max
machines Mi

∑

jobs j assigned to Mi

tj.

Your friends’ local search heuristic works as follows. They start with

an arbitrary assignment of jobs to machines, and they then repeatedly

try to apply the following type of “swap move.”

Let A(i) and A(j) be the jobs assigned to machines Mi and Mj,

respectively. To perform a swap move on Mi and Mj, choose subsets

of jobs B(i) ⊆ A(j) and B(j) ⊆ A(j), and “swap” these jobs between

the two machines. That is, update A(i) to be A(i) ∪ B(j) − B(i),

Notes and Further Reading 705

and update A(j) to be A(j) ∪ B(i) − B(j). (One is allowed to have

B(i) = A(i), or to have B(i) be the empty set; and analogously for

B(j).)

Consider a swap move applied to machines Mi and Mj. Suppose the

loads on Mi and Mj before the swap are Ti and Tj, respectively, and

the loads after the swap are T ′
i and T ′

j . We say that the swap move is

improving if max(T ′
i , T ′

j) < max(Ti, Tj)—in other words, the larger of the

two loads involved has strictly decreased. We say that an assignment

of jobs to machines is stable if there does not exist an improving swap

move, beginning with the current assignment.

Thus the local search heuristic simply keeps executing improving

swap moves until a stable assignment is reached; at this point, the

resulting stable assignment is returned as the solution.

Example. Suppose there are two machines: In the current assignment,

the machine M1 has jobs of sizes 1, 3, 5, 8, and machine M2 has jobs of

sizes 2, 4. Then one possible improving swap move would be to define

B(1) to consist of the job of size 8, and define B(2) to consist of the job

of size 2. After these two sets are swapped, the resulting assignment has

jobs of size 1, 2, 3, 5 on M1, and jobs of size 4, 8 on M2. This assignment

is stable. (It also has an optimal makespan of 12.)

(a) As specified, there is no explicit guarantee that this local search

heuristic will always terminate. What if it keeps cycling forever

through assignments that are not stable?

Prove that, in fact, the local search heuristic terminates in a finite

number of steps, with a stable assignment, on any instance.

(b) Show that any stable assignment has a makespan that is within a

factor of 2 of the minimum possible makespan.

Notes and Further Reading

Kirkpatrick, Gelatt, and Vecchi (1983) introduced simulated annealing, build-

ing on an algorithm of Metropolis et al. (1953) for simulating physical systems.

In the process, they highlighted the analogy between energy landscapes and

the solution spaces of computational problems.

The book of surveys edited by Aarts and Lenstra (1997) covers a wide range

of applications of local search techniques for algorithmic problems. Hopfield

neural networks were introduced by Hopfield (1982) and are discussed in

more detail in the book by Haykin (1999). The heuristic for graph partitioning

discussed in Section 12.5 is due to Kernighan and Lin (1970).

706 Chapter 12 Local Search

The local search algorithm for classification based on the Labeling Problem

is due to Boykov, Veksler, and Zabih (1999). Further results and computational

experiments are discussed in the thesis by Veksler (1999).

The multi-agent routing problem considered in Section 12.7 raises issues

at the intersection of algorithms and game theory, an area concerned with

the general issue of strategic interaction among agents. The book by Osborne

(2003) provides an introduction to game theory; the algorithmic aspects of the

subject are discussed in surveys by Papadimitriou (2001) and Tardos (2004)

and the thesis and subsequent book by Roughgarden (2002, 2004). The use

of potential functions to prove the existence of Nash equilibria has a long

history in game theory (Beckmann, McGuire, and Winsten, 1956; Rosenthal

1973), and potential functions were used to analyze best-response dynamics

by Monderer and Shapley (1996). The bound on the price of stability for the

routing problem in Section 12.7 is due to Anshelevich et al. (2004).

